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SUMMARY

The artificial neural networks (ANN) methodology is an outgrowth of research in artificial intelligence. In
this study the feed-forward network model that was proposed by Rumelhart, Hinton, and Williams was applied
to the mapping of functions that are encountered in structural mechanics problems. Several different network
configurations were chosen to train the available data for problems in materials characterization and structural
analysis of plates and shells. By using the recall process the accuracy of these trained networks was assessed.

INTRODUCTION

The nonlinear stress analysis of complex structural systems by using finite element analysis (FEA) pro-
grams requires an accurate representation of the material behavior, which is usually available through experi-
ments in tabular form. In the case of nonlinear material properties, including material behavior in an FEA
program leads to large computation times. There is a need to develop new ways of material characterization that
are suitable for the FEA, can capture the essence of material behavior, and are computationally efficient. The
use of artificial neural networks (ANN) seems to be particularly appealing for this type of problem.

For a large class of structural systems the analysis results are available in the form of tables, charts, and
equations. In designing these structures the values are often needed at intermediate points, and they are com-
puted by using linear interpolation schemes. This process is error prone and time consuming whenever values at
large numbers of intermediate points are needed. The application of the ANN methodology could be useful for
solving this type of problem.

ARTIFICIAL NEURAL NETWORKS

The problems discussed in the introduction can be solved by developing efficient procedures for generalized
multidimensional functional mapping. Ken-Ichi Funahasi (ref. 1) proved mathematically that any continuous
mapping can be approximated by multilayer neural networks with at least one hidden layer. This work was
further extended by Homnik et al. (ref. 2) to include other types of squashing functions. They also provided the
mathematical proof (ref. 3) that these types of networks are capable of approximating the arbitrary functions,
including their derivatives. Further refinement of this work can be found in reference 4. These mathematical
proofs along with other work provide an excellent basis for using the multilayer feed-forward networks with a
continuous squashing function for approximate functional mapping.



One of the popular ANN models of the multilayer feed-forward network is based on the studies of Rumelhart,
Hinton, and Williams (ref. 5). It consists of an input, an output, and a minimum of one intermediate layer (fig. 1).
The network training is accomplished by using the backpropagation algorithm as described in reference 5. It
establishes the weights of the interconnections and the bias values for the processing elements. They are saved
in a small file for use in the network recall process. This ANN model has been successfully used in pattern
recognition tasks, such as text-to-speech synthesis (ref. 6), image processing and compression (ref. 7), and non-
linear signal processing (ref. 8).

The application of the ANN that is based on the backpropagation algorithm in computational structures
technology (CST) is relatively new in origin. Rehak et al. (ref. 9) used ANN for simulating the dynamic behav-
ior of structures. Troudet and Merrill (ref. 10) adopted a similar approach for estimating the fatigue life of struc-
tural components. Berke and Hajela (ref. 11) used ANN for structural analysis and shape optimization of trusses.
The ANN approach has shown considerable promise in material properties characterization. Brown et al. (ref. 12)
used it to model composite ply micromechanics. Ghaboussi et al. (ref. 13) have modeled the nonlinear behavior
of concrete. McCauley (ref. 14) has explored the optical implementation of neural networks for engineering design.

The mathematical proofs for the convergence of an ANN that are based on the backpropagation algorithm
do not provide guidelines for creating an appropriate network configuration or for network training. Presently,
guidelines are provided by creating different network configurations and testing them numerically for accuracy
and convergence characteristics. Extensive numerical experimentation is required before appropriate ANN models
can be developed for a given problem. This approach has been tried in applying ANN in CST. In many cases a
large number of processing units are used for intermediate layers, leading to an excessive amount of training
time and a redundancy in the ANN configurations.

OBJECTIVE AND SCOPE OF STUDY

A main objective of this study was to obtain the smallest possible ANN configurations for CST problems.
The problems were selected to reflect different types of functional approximations. The first two problems in-
volved material property characterization. They were mainly chosen to develop a suitable form wherein trained
networks could be added to a nonlinear FEA program without major modifications. This interfacing is needed to
provide material data to an FEA program. The plate and shell problems were used to test the capability of the
ANN method for multidimensional functional approximations. In both cases tubular data were used to train the
ANN models and to test the accuracy of the trained networks’ interpolation capability at the intermediate points.
The details for these problems are provided in the next section.

PROBLEM DESCRIPTION

The first problem of material characterization maps the strain values to the known stress values. The
following equation relates strains to stresses:

o= Eo(e - 5¢?) for e20
(D
o= Eo(e + 5¢2) for £ <0

The ANN model is given the strain values € as input, and the stress values ¢ are obtained as output.



The second problem also falls into the category of material property characterization. The ANN models are
given the strain values € as input, and predictions are made for the stresses ¢ and the tangent modulus do/de
that are needed for the elastic-plastic stress analysis. This constitutes a mapping of one independent variable to
two dependent variables. It aliows the inclusion of the variable and its slope. The slope of the function is given as

% = E(1 - 10¢g) for €
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The distribution of bending moment factors in a simply supported rectangular plate is given in tabular form
in reference 15. The two input units of the neural network model are the aspect ratio b/a and the x coordinate of
the plate (fig. 2). The y coordinates for all the points are zero. The two outputs from the ANN model are the
factors for the bending moments M, and M,. This third problem was chosen to assess the modeling capability of
ANN for a two-independent-variables-to-two-dependent-variables functional mapping.

The fourth problem is for an elliptical paraboloid shell from reference 16. In this case the input variables
are x/a, y/b, and c,/c,, defining the location of the points at which the stress resultants are computed and the
geometry of the shell, respectively, (fig. 3). The outputs for the ANN models are the coefficients for the stress
resultants N, N,, and N,. The problem allows us to investigate a more generalized functional mapping where
the three input variables defining geometry are mapped to a space of the three stress resultant coefficients.

The standard configurations of a feed-forward network that includes an input layer, an output layer, and an
intermediate layer were utilized for this study. A typical network configuration is shown in figure 1. The com-
puter program NETS (ref. 17) was used for all the network training and recall. In the program the backpropaga-
tion algorithm was implemented at the NASA Johnson Space Center. The number of processing units in the

intermediate layer was established by arbitrary selection, and then the accuracy of the trained network model
was assessed.

RESULTS AND DISCUSSION
Materials Characterization

For stress-strain curve modeling, the following ANN configurations were chosen:

(1) Case 1, 1-5-1.13
(2) Case 2, 1-10-1.13
(3) Case 3, 1-15-1.13
(4 Case 4, 1-5-1.19
(5) Case 5, 1-10-1.19

The first number denotes the number of input units. The second number represents the number of hidden units,
and it varies from 5 to 15. The third number (1) is the number of output units. The number after the period is
the total number of input-output pairs that were used for network training. These pairs were obtained from equa-
tion (1). All the training data were scaled between 0 and 1 because of the restriction that is placed by the back-
propagation algorithm which is implemented in NETS. The networks were trained with a maximum error not
exceeding 1.8 percent and a root-mean-square (rms) error less than 1 percent. After the training the files containing
weights and biases were saved for each network to use in assessing the accuracy of all the neural network models.



The input strain values used for training were augmented by additional strain values from equation (2) to
propagate the data. The predicted stress values from the neural networks were plotted along with the actual
values obtained from equation (2). Figure 4(a) shows good prediction capability for cases 1 to 3, with case 3
being closest to the actual stress-strain curve. Cases 4 and 5 (fig. 4(b)) were in good agreement with the known
results. Cases 3 and 4 (fig. 4(c)) were very close to the chosen stress-strain curve. It is difficult to select the best
case from these plots. Therefore, for a closer look at the accuracy of the results, the error in neural network
interpolation versus strain is plotted in figure 5. The error was within 3 percent when the strains used for train-
ing were also used for predicting stresses. For other strain values these errors could be significant, especially at
the two end points of the stress-strain curve, where strain values were nearly +0.2. The other location where
errors were significant was near the strain value of zero. Note that at these strain levels the actual stress is
approaching zero. Any small variation in the neural network prediction causes a large relative error because in
calculating the error the difference between the actual and predicted stress is divided by a stress value that is
small in magnitude. This division artificially magnifies the magnitude of the error. Therefore, the ANN predic-
tions, although very accurate, could be in error at a few points, and careful checking is necessary before select-
ing an appropriate ANN configuration for material characterization.

Several network configurations were tried for the second problem, where the strains € were used as input to
predict the stresses ¢ and the tangent modulus do/de given by equations (1) and (2). The two networks with the
most accurate results were

(1) Case 1, 1-20-2.11 (26 000 training cycles)
(2) Case II, 1-20-2.21 (4000 training cycles)

Both networks have identical configurations with 1 input unit, 2 output units, and 20 hidden units. They
only differ in the number of training pairs used. For case I, 11 of the 21 input-output pairs were used and for
case II all 21 input-output pairs were used. For both cases all the 21 pairs were used for propagation, resulting
in rote memorization for the second network model. The maximum allowed errors in training were 0.2 and
8 percent for cases I and II, respectively. Figure 6 contains the plot for the exact curve from equation (1) and
the predicted stress values from cases I and II. The relative errors in stresses are shown in figure 7. The errors
for case I were within +1.5 percent for all the points except at two points where they were nearly 15 percent.
The errors for case II were within 211 percent, making it less accurate than the case I ANN model. Figure 8
shows the plot of tangent modulus versus strain. The relative errors are plotted in figure 9. A trend similar to
the stress prediction can be observed here. The inaccuracy of the case II ANN model in predicting results can
be attributed to the maximum error that was allowed for training the network. However, a low maximum error
leads to a large number of training cycles, which may not be feasible for some problems.

Plate Problem

For the plate problem two input units were used to supply the values of x and b/a. The two output units
were for the bending moment factors M, and My, as defined in reference 15. Three different values were chosen
for the number of hidden units. A set of 45 input-output pairs was used for training. A different set of 25 pairs
was used for obtaining the bending moments at intermediate points. Table I shows the number of cycles and the
maximum and root mean square (rms) errors obtained in training the ANN models that were used for the plate
problems. This table shows that the 2-15-2 network model had the smallest maximum error.

For the plate problem it was difficult to plot the predicted bending moment factors with the exact solution.
Therefore, an absolute relative error distribution in predictions by different ANN models using the training data
set are shown in figure 10(a) as a bar chart. These predictions can be considered as a rote memorization because
the same data were used for interpolation purposes that were used for training. The results were extremely



accurate for all the cases. Approximately 90 percent of the predicted values had errors that were below
3 percent.

Figure 10(b) shows the same quantities as discussed before. However, in this case a different set of data
points was used for predicting the bending moment factors for the plate problem than was used for training.
This could be termed "generalization" by the network. In this case 84 percent of the predicted values had errors
that were below 3 percent, showing very good generalization capability for all the constructed ANN models.
Overall, for the plate problem the ANN approach gave extremely good results. For a closer look at the predicted
and exact values of the bending moment factors for the plate problem, see table II.

Shell Problem

For the elliptical paraboloid shell problem three input units were used for x/a, y/b, and c,/c,, defining the
location of the points at which the stress resultants are computed and the geometry of the shell. The three output
units were used for the three coefficients for the stress resultants as defined in reference 16. Three ANN con-
figurations were tried with 6, 10, and 15 hidden units, respectively. The network configuration with 6 hidden
units had a very low rate of convergence and was discarded. The network with 10 hidden units has a maximum
error of 0.03 and an rms error of 0.008 with 4504 cycles. The network with 15 hidden units was allowed to run
for 22 439 cycles with a maximum error of 0.039 and an rms error of 0.005, which was less than that for the
second configuration. However, note that for all these configurations most of the error reduction was accom-
plished in the first few thousand cycles and after that the convergence rate was very low. For training purposes
100 input-output pairs were used. For interpolation at intermediate points a separate set of 25 pairs was used
that included a value of infinity for the coefficient for N, at five points.

Once again it was difficult to plot the predicted results versus the exact results; therefore an error distribu-
tion was computed for the predicted values when the training set and the intermediate points were used for
propagation. Only the network model with configuration 3-15-3 was used because it had the smallest rms error.
The results are plotted in figure 11. The error distribution shows that the predicted results were most accurate
for the coefficients for N, and least accurate for the coefficients for N,,. It also shows that the prediction accu-
racy for the training set was extremely high (i.e., 96 percent of the predicted values had errors that were below
3 percent for the coefficients for N,). The interpolation accuracy for the shell problem was low relative to that
for the plate problem. This could be attributed to the small magnitudes of these coefficients. However, in the
case of the coefficients for N, at five points the actual magnitude was infinity. The ANN model cannot be
trained for this value. For a closer look at the magnitudes of all three coefficients of the stress resultants at 125
points, which included the training and intermediate data sets, see table ITL It can be observed that the actual
numbers are much closer than shown by the error distributions on the plots.

CONCLUSIONS

For all the problems the artificial neural network (ANN) approach led to very small files containing the
weights and biases that were used for reconstructing the original functions. It captured all the essential char-
acteristics of these functions, leading to a significant amount of data compression. Also, the trained networks in
their present forms for the material characterization could easily be incorporated with minimal modifications
into an existing finite element program.

The ANN approach for functional approximation offers a viable alternative to other methods that are used
for similar purposes. It is capable of mapping multidimensional functions as shown by the different solutions to
the problems. All the ANN models that were trained in this study were considerably smaller than the networks



reported in other studies. The results show that ANN approximations are very good for associative recall with
rote memorization. They can also extract the general trend from the data. However, caution must be exercised in
using this type of interpolation, as can be seen from the shell example.

RECOMMENDATIONS AND SUGGESTIONS FOR FUTURE WORK

It is difficult to establish guidelines for configuring an appropriate artificial neural network (ANN) for
different problems. Similarly, it is not possible to predict a priori the number of cycles needed for training an
accurate ANN. Therefore, there is a strong need to establish some of these guidelines either by mathematical
proofs or by an extensive numerical experimentation. The backpropagation algorithm has a tendency to move
toward a lower convergence rate in the training process. This problem can be partially alleviated by changing
the learning rate and the momentum term in the learning equation. It is suggested to try other ANN methods,
such as a counterpropagation network, to investigate the convergence rate during training and to achieve more
accurate results.
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TABLE 1.—NEURAL NETWORK CONFIGURATIONS
WITH CORRESPONDING MAXIMUM AND
RMS ERRORS AND NUMBER OF
CYCLES FOR PLATE PROBLEM

ANN Maximum rms Number

configuration error error of cycles
2-6-2 0.0431 0.0145 6 000
2-10-2 0263 .0092 30 000
2-15-2 0180 0060 23 000




TABLE IL—NUMERICAL FACTORS FOR BENDING MOMENTS OF
SIMPLY SUPPORTED RECTANGULAR PLATE UNDER UNIFORM
PRESSURE FOR ANN CONFIGURATION 2-15-2 AND
EXACT SOLUTION

(a) Bending moment M,; interpolation at training set

bla Solution x=0.la x=02a x=03a x=04a x=0.5a
M aty=0

1.0 ANN 0.0227 0.0343 0.0421 0.0462 0.0472
Exact .0209 .0343 .0424 .0466 0479

1.2 ANN 0253 0424 .0536 0597 .0607
Exact 0256 0432 0545 0607 0627

1.4 ANN .0288 0504 .0644 .0720 .0738
Exact .0297 .0509 .0649 .0730 0755

1.6 ANN 0325 0571 .0734 0822 .0846
Exact .0330 0572 .0736 0831 0862

1.8 ANN .0356 0623 .0804 .0905 .0933
Exact 0357 0623 .0806 0913 0948

20 ANN .0381 0662 .0858 0972 .1004
Exact 0378 .0663 .0861 0978 .1017

25 ANN .0416 0723 .0943 .1080 1126
Exact 0413 0729 0952 .1085 1129

3.0 ANN .0431 0754 .0988 1137 1187
Exact .0431 .0763 .1000 1142 .1189

4.0 ANN .0443 0791 .1037 1186 1224
Exact .0445 0791 .1038 1185 1235

(b) Bending moment M,; interpolation at training set
bla Solution x=0.1a x=02a x=03a x=04a x=0.5a
M aty=0

1.0 ANN 0.0170 0.0295 0.0398 0.0460 0.0479
Exact .0168 .0303 .0400 0459 0479

1.2 ANN 0174 .0315 0421 0477 .0495
. Exact 0174 0315 .0417 0480 .0501

1.4 ANN 0174 .0316 0419 .0475 .0496
Exact 0175 0315 .0418 .0481 0502

1.6 ANN 0171 .0309 .0409 0465 .0492
Exact 0171 .0309 0411 0472 .0492

1.8 ANN .0167 .0300 .03966 .0453 .0483
Exact .0167 .0301 .0399 0459 0479

20 ANN .0162 0290 0384 0439 .0469
Exact .0162 .0292 .0387 0444 0464

25 ANN 0153 0270 0356 0409 .0430
Exact 0152 0272 .0359 0412 .0430

3.0 ANN 0146 .0258 0337 0389 .0403
Exact .0145 .0258 .0340 .0390 .0406

4.0 ANN .0140 0246 .0322 .0371 .0381
Exact .0138 .0246 0322 .0369 .0384




TABLE I1.—Concluded.

(c) Bending moment M,; interpolation at intermediate points

bla Solution x=01la x=02a x=03a x=04a x=0.5a
M, aty=0
1.1 ANN 0.0239 0.0383 0.0478 0.0529 0.0538
Exact .0234 .0389 .0486 .0541 .0554
1.3 ANN 0270 .0465 0592 0661 0675
Exact 0277 0472 .0599 067! .0694
1.5 ANN 0306 .0539 .0691 0774 .0795
Exact .0314 .0544 .0695 0783 0812
1.7 ANN 0341 .0598 0771 0866 0892
Exact 0344 0599 0773 0874 0908
1.9 ANN .0370 0644 .0833 .0940 .0970
Exact 0368 .0644 .0835 0948 0985
(d) Bending moment M,; interpolation at intermediate points
bla Solution x=0.1la x=02a x=03a x=04a x=0.5a
M,aty=0
1.1 ANN 0.0173 0.0309 0.0415 0.0473 0.0490
Exact 0172 0311 0412 0475 .0493
1.3 ANN .0175 0317 0422 0477 10496
Exact 0175 0316 0417 .0482 .0503
1.5 ANN 0173 .0313 .0415 0471 .0495
Exact .0173 0312 0415 0478 .0498
1.7 ANN 0169 .0305 .0403 .0459 0488
Exact 0169 0306 .0405 0466 .0486
1.9 ANN 0164 {0295 0390 .0446 0476
Exact 0165 0297 0393 0451 0471
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Figure 1.— Configuration of a neural network.

{a) Cases 1 to 3.
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Figure 2.— Simply supported rectangular plate.
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{c) Cases 3 and 4.

Figure 4.—Neural network predictions for cases 1 to 5.

Figure 3.— Elliptic paraboloid shell geometry and stress resultants.
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Figure 6.— Neural network stress predictions for cases I and II.

Error in predicted stresses, percent

€ 15
Q
1<
& 10
g s
o
R X ¢
o
3 8
5 -5
v ;
&
l | € -10 |- O Casell
S
{b) Cases 4 and 5. E 15 ] 1 |
Y .05 10 15 .20
30 — Strain, in./in.
Figure 7.— Errors in neural network stress interpolation for cases [
and IL
20 —
10 200 4
‘B
o
0 E
& ig S8
- ARAXY S ¥+ ¢ 3, ,
E o Exact function
€ O Casel
10 | 1 l | & 100 - O Casen
- c
-2 -1 0 3 2 =
Strain, in./in. -200 L J
0 .05 10 a5 .20

(c) Cases 3 and 4. -
Strain, in./in.

Figure S.—Errors in neural network interpolation for cases 1 to 5. Figure 8.— Neural network tangent modulus predictions for cases

Tand I

14



Number of data points

40 —

30

LA

20

10

Error in predicted tangent
modulus, percent

O Casell
i | O ]

0 .05 10 15
Strain, in./in.

Figure 9.— Errorin neural network tangent modulus interpolation
for casesland Il

V2

(oaUAn

(a) Training set.

ANN configuration

2-6-2 (My)
2-6-2(My)

2-10-2 (My)
2-10-2 (My)
2-15-2 (My)
2-15-2 (M)

B

1-2 2-3 3-6
Absolute relative error, percent

(b) Intermediate points.
Figure 10.—Error distribution for plate problem.
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